
Rajendra Kumar Mahto

CPU SCHEDULING

CPU scheduling is the basis of multiprogrammed operating systems. By switching the CPU
among processes, the operating system can make the computer more productive.
In a single – processor system, only one process can run at a time, any others must wait until the
CPU is free and can be rescheduled. The objective of multiprogramming is to have some process
running at all times, to maximize CPU utilization.
The process of CPU scheduling depends on an observed property of processes: process execution
consists of a cycle of CPU execution and I/O wait. Processes alternate between these two states.
Process execution begins with a CPU burst. That is followed by an I/O burst, which is followed
by another CPU burst, then another I/O burst, and so on.

Types of scheduling
Preemptive Scheduling: Preemptive scheduling includes the following four execution states:-
1. When process switches from the running state to the waiting state.
2. When a process switches from the running state to the ready state.
3. When a process switches from the waiting state to the ready state.
4. When a process terminates.
Non – Preemptive Scheduling: When scheduling take place only under circumstances 1 and 4
i.e. When process switches from the running state to the waiting state and when a process
terminates, we say that the scheduling scheme is non – preemptive.
Scheduling Criteria:
The criteria include the following:

Department of Information Technology, DSPMU Ranchi

Rajendra Kumar Mahto

 CPU utilization: We want to keep the CPU as busy as possible. Conceptually, CPU
utilization can range from 0 to 100 percent. In a real system, it should range from 40
percent to 90 percent.

 Throughput: The number of processes that are completed per time unit, called
throughput. For long processes, this rate may be one process per hour; for short
transactions, it may be ten processes per second.

 Turnaround Time: The interval from the time of submission of a process to the time of
completion is the turnaround time. Turnaround time is the sum of the periods spent
waiting to get into memory, waiting in the ready queue, executing on the CPU, and doing
I/O.

 Waiting time: Waiting time is the sum of the periods spent waiting in the ready queue.
 Response time: The time from the submission of a request until the first response is

produced, is termed as response time. Response time, is the time it takes to start
responding, not the time it takes to output the response.

Scheduling Algorithm
1. First – Come , First – Served (FCFS) Scheduling: The simplest CPU – scheduling

algorithm is the FCFS scheduling. With this scheme ,the process that request the CPU
first is allocated the CPU first. When a process enters the ready queue, its PCB is linked
onto the tail of the queue. When the CPU is free, it is allocated to the process at the head
of the queue. The running process is then removed from the queue.
On the negative side ,the average waiting time under the FCFS policy is often quite long.
Consider the following set of process that arrive at time 0, with the length of the CPU
burst given in milliseconds;

Process Burst Time
 P1 24
 P2 3
 P3 3

If the processes arrive in the order P1, P2, P3 , and are served in FCFS order, we get the
result Gantt chart
P1 P2 P3

0 24 27 30

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, and 27
milliseconds for process P3.
Average waiting time = (0+24+27)/3=17
If the processes arrive in the order P2, P3, P1, then
P2 P3 P1

0 3 6 30

The average waiting time = (6+0+3)/3=3 milliseconds.
The FCFS scheduling is non – preemptive. Once the CPU has been allocated to a process,
that process keeps the CPU until it releases the CPU ,either by terminating or by
requesting I/O. The FCFS algorithm is thus particularly troublesome for time – sharing
systems, where it is important that each user get a share of the CPU at regular intervals.

2. Shortest-Job-First Scheduling (SJFS) : This algorithm associates with each process the
length of the process’s next CPU burst. When the CPU is available, it is assigned to the

Department of Information Technology, DSPMU Ranchi

Rajendra Kumar Mahto

process that has the smallest next CPU burst. If the next CPU burst of two processes are
the same, FCFS scheduling is used to break the tie.
Consider the following set of processes, with the length of the CPU burst given in
milliseconds:

Process Burst Time
 P1 6
 P2 8
 P3 7
 P4 3

Using SJFS, the Gantt chart:
 P4 P1 P3 P2
0 3 9 16 24

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2, 9
milliseconds for process P3, and 0 milliseconds for process P4.
The average waiting time = (3+16+9+0)/4 = 7
The SJFS algorithm is provably optimal, in that it gives the minimum average waiting
time for a given set of processes. Moving a short process before a long one decreases the
waiting time of the short process more than it increases the waiting time of the long
process. Consequently, the average waiting time decreases.
The real difficulty with the SJF algorithm is knowing the length of the next CPU request.

3. Priority Scheduling: A priority scheduling is associated with each process, and the CPU
is allocated to the process with the highest priority. Equal – priority processes are
scheduled in FCFS order. An SJF algorithm is simply a priority algorithm where the
priority(P) is the inverse of the next CPU burst. The larger the CPU burst, the lower the
priority, and vice versa.
Consider the following set of processes, assumed to have arrived at time 0 in the order P1,
P2, …, P5, with the length of the CPU burst given in milliseconds:

Process Burst Time Priority
 P1 10 3
 P2 1 1
 P3 2 4
 P4 1 5
 P5 5 2

Gantt chart:
P2 P5 P1 P3 P4
0 1 6 16 18 19

Average waiting time = 8.2.
Priority Scheduling can be either preemptive or non – preemptive. When a process

arrives at the ready queue, its priority is compared with the priority of the currently running
process. A preemptive priority scheduling algorithm will preempt the CPU if the priority of the
newly arrived process is higher than the priority of the currently running process. A non-
preemptive priority scheduling algorithm will simply put the new process at the head of the
ready queue.

A major problem with the priority scheduling algorithms is indefinite blocking or
starvation. A process that is ready to run but waiting for the CPU can be considered blocked. A
priority scheduling algorithm can leave some low-priority processes waiting indefinitely.

Department of Information Technology, DSPMU Ranchi

Rajendra Kumar Mahto

4. Round – Robin Scheduling: The round-robin (RR) scheduling algorithm is designed
especially for time – sharing systems. It is similar to FCFS scheduling, but preemption is
added to enable the system to switch between processes. A small unit of time, called a
time quantum or time slice, is defined. A time quantum is generally from 10 to 100
milliseconds in length. The ready queue is treated as a circular queue. the CPU scheduler
goes around the ready queue, allocating the CPU to each process for a time interval of up
to 1 time quantum.
To implement RRS, we keep the ready queue as a FIFO queue of processes. New
processes are added to the tail of the ready queue. the CPU scheduler picks the first
process from the ready queue, sets a timer to interrupt after 1 time quantum, and
dispatches the process.
The average waiting time under the RR policy is often long.
Consider the following set of processes that arrive at time 0, with the length of the CPU
burst given in milliseconds.

Process Burst Time
 P1 24
 P2 3
 P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4 milliseconds.
Since it requires another 20 milliseconds, it is preempted after first time quantum, and the
CPU is given to the next process in the queue, process P2. Process P2 does not need 4
milliseconds, so it quite before its time quantum expires. The CPU is then given to the
next process, process P3. Once each process has received 1 time quantum, the CPU is
returned to process P1, for an additional time quantum. The resulting RR schedule is as
follows:
P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

P1 waits for 6 milliseconds(10-4), P2 waits for 4 milliseconds, and P3 waits for 7
milliseconds.
Average waiting time = 5.66 milliseconds.

5. Multilevel Queue Scheduling: A multilevel queue scheduling algorithm partitions the
ready queue into several separate queues. The processes are permanently assigned tp one
queue, generally based on some property of the process, such as memory size, process
priority, or process type. Each queue has its own scheduling algorithm.

Department of Information Technology, DSPMU Ranchi

Fig: Multilevel queue
scheduling

Student processes

Batch processes

Interactive editing processes

Interactive processes

System processes

